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Abstract

Background

The  natural  sciences,  such  as  ecology  and  earth  science,  study  complex  interactions
between biotic and abiotic systems in order to understand and make predictions. Machine-
learning-based methods have an advantage over traditional statistical methods in studying
these  systems  because  the  former  do  not  impose  unrealistic  assumptions  (such  as
linearity),  are  capable  of  inferring  missing  data,  and  can  reduce  long-term  expert
annotation burden. Thus, a wider adoption of machine learning methods in ecology and
earth  science  has  the potential  to  greatly  accelerate  the  pace  and  quality  of  science.
Despite these advantages, the full potential of machine learning techniques in ecology and
earth science has not be fully realized.

New information

This is largely due to 1) a lack of communication and collaboration between the machine
learning  research community  and natural  scientists,  2)  a  lack  of  communication  about
successful applications of machine learning in the natural sciences, 3) difficulty in validating
machine learning models, and 4) the absence of machine learning techniques in a natural
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science  education.  These impediments  can  be  overcome through financial  support  for
collaborative  work  and  the  development  of  graduate-level  educational  materials  about
machine learning. Natural scientists who have not yet used machine learning methods can
be  introduced  to  these  techniques  through  Random Forest,  a  method  that  is  easy  to
implement  and  performs  well.  This  manuscript  will  1)  briefly  describe  several  popular
machine learning tasks and techniques and their application to ecology and earth science,
2)  discuss  the  limitations  of  machine  learning,  3)  discuss  why  ML  methods  are
underutilized in natural science, and 4) propose solutions for barriers preventing wider ML
adoption.
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Introduction

Machine  Learning  (ML)  is  a  discipline  of  computer  science  that  develops  dynamic
algorithms  capable  of  data-driven  decisions,  in  contrast  to  models  that  follow  static
programming instructions.  The very  first  mention  of  ‘machine  learning’  in  the  literature
occurred in 1930 and use of the term has been growing steadily since 1980 (Fig. 1). While
discussion of ML is likely to recall scenes from popular science-fiction books and movies,
there are many practical applications of ML in a wide variety of disciplines from medicine to
finance. Part of what makes ML so broadly applicable is the diversity of ML algorithms
capable of performing very well under messy, real-world conditions. Despite, and perhaps
because  of  this  versatility,  uptake  of  ML  applications  have  lagged  behind  traditional
statistical techniques in the natural sciences.

The advantage of ML over traditional statistical techniques, especially in earth science and
ecology,  is  the  ability  to  model  highly  dimensional  and  non-linear  data  with  complex
interactions and missing values (De’ath and Fabricius 2000, Recknagel 2001, Olden et al.
2008, Haupt et al. 2009b, Knudby et al. 2010a). Ecological data specifically are known to
be non-linear and highly dimensional  with intense interaction effects;  yet,  methods that
assume linearity and are unable to cope with interaction effects are still being used (Olden
et al. 2008, Knudby et al. 2010a) with some modification of the data to try and make the
methods work (Knudby et al.  2010a, Pasini 2009, Džeroski 2001). Several comparative
studies  have  already  shown  that  ML  techniques  can  outperform  traditional  statistical
approaches in a wide variety of problems in earth science and ecology (Lek et al. 1996b,
Levine et al. 1996, Manel et al. 1999, Segurado and Araújo 2004, Elith et al. 2006, Lawler
et al. 2006, Prasad et al. 2006, Cutler et al. 2007, Olden et al. 2008, Zhao et al. 2011,
Bhattacharya 2013); however, directly comparing the results of statistical techniques to ML
techniques can be difficult and requires careful consideration (Fielding 2007).
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The exact division between ML methods and traditional statistical techniques is not always
clear  and ML methods are not  always better  than traditional  statistics.  For  example,  a
system may not be linear, but a linear approximation of that system may still yield the best
predictor. The exact method(s) must be chosen based on the problem at hand. A meta
approach that considers the results of multiple algorithms may be best. This manuscript will
discuss four types of ML tasks and seven important limitations of ML methods. These tasks
and limitations will be related to six types of ML techniques and their relative strengths and
weaknesses in ecology and earth science will be discussed. Specific applications of ML in
ecology  and  earth  science  will  be  briefly  reviewed  with  the  reasons  ML  methods  are
underutilized in natural sciences. Potential solutions will be proposed.

Background

The basic premise of ML is that a machine (i.e., algorithm or model) is able to make new
predictions based on data.  The basic  technique behind all  ML methods is  an iterative
combination  of  statistics  and  error  minimization  or  reward  maximization,  applied  and
combined in  varying  degrees.  Many ML algorithms iteratively  check all  or  a  very  high
number of possible outcomes to find the best result, with “best” defined by the user for the
problem  at  hand.  The  potentially  high  number  of  iterations  is  prohibitive  of  manual
calculations and is a large part of why these methods are only now widely available to
individual researchers.

Computing  power  has  increased  such  that  ML  methods  can  be  implemented  with  a
desktop or even a laptop. Before the current availability of computing power, ecologists and
earth scientists had to settle for statistical methods that assumed linearity (Knudby et al.

 
Figure 1. 

Use of  the  phrase ‘machine learning’  in  the Google  Books Ngram Viewer:  This  plot
shows the use of the phrase ‘machine learning’ by decade as percentage of total words in the
Google English Corpus. http://books.google.com/ngrams
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2010a) and limited, controlled experiments (Fielding 1999b). Both of these restrictions limit
the scale of studies and accuracy of results. A similar acceleration has been observed for
numerical modeling of natural systems, where model predictions have improved because
increased computing power has allowed for the inclusion of more parameters and, more
importantly,  finer  granularity  (see  Semtner  1995,  Forget  et  al.  2015  for  examples  in
oceanography).

The first step in applying ML is teaching the algorithm using a training data set. The training
data  set  is  a  collection  of  independent  variables  with  the  corresponding  dependent
variables. The machine uses the training data to “learn” how the independent variables
(input) relate to the dependent variable (output). Later, when the algorithm is applied to new
input  data,  it  can apply that  relationship and return a prediction.  After  the algorithm is
trained, it needs to be tested to get a measure of how well it can make predictions from
new data. This requires another data set with independent and dependent variables, but
the dependent variables (target) are not provided to the learner. The algorithm predictions
(output)  are  compared  to  the  withheld  data  (target)  to  determine  the  quality  of  the
predictions and thus the utility of the algorithm. This comparison is an important difference
between ML and traditional statistical techniques that use p values for validation.

**A Note on Terms:  The interdisciplinary  nature  of  ML and its  application  has
resulted in a confusing collection of terms for similar concepts. Below are groups of
functional synonyms describing the major concepts discussed in this manuscript.

• Observation, instance, data point:  These terms are used to describe the
data instances that can be thought of as rows in a spreadsheet.

• Explanatory variables, features, input, independent variables, x, regressors:
These terms are used to describe the independent variables/input data that
are used to make predictions.

• Outcomes, dependent variables, y, classes, output: These terms are used to
describe the dependent variables/output that are the results of the algorithm
or  part  of  the  training/test  set.  The  outcomes  in  the  test  set  that  the
algorithm is trying to predict are referred to as the "target".

• Outlier, novelty, deviation, exception, rare event, anomaly: These terms are
used to describe data instances that are not well represented in the data
set. They can be errors or true outliers.

Machine Learning Tasks

There are four different types of tasks that will be discussed in the context of available ML
techniques and natural science problems. Most ML techniques can be used to perform
multiple tasks and several tasks can be used in combination to address the same problem;
therefore,  it  can  be  difficult  to  draw  firm  boundaries  around  categories  of  tasks  and
techniques. Many of the natural science problems discussed in the latter half of this paper
have been addressed using all of the tasks and techniques discussed. The list below is not
meant  to  be  comprehensive.  Only  the  tasks  most  relevant  to  the  natural  science
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applications are discussed here. Each ML technique mentioned here is more thoroughly
discussed in its own section.

Task 1) Function Approximation. In this task, the machine inferrs a function from (x,y) data
points, which are real numbers (Bishop 2006, Alpaydin 2014). Regression and curve-fitting
are types of function approximation. Artificial Neural Networks are one ML technique that
performs function approximation (see discussion of ANN below). Natural science problems
such as predicting the global riverine fish population (Guégan et al. 1998) and forecasting
oceanographic  conditions  (Hsieh  2009)  have  been  addressed  with  Artificial  Neural
Networks performing function approximation tasks. Tree-based methods can also be used
for function approximation via regression (Loh 2014). Linear regression is an example of a
traditional statistical method that performs a function approximation task (Sokal and Rohlf
2011).

Task 2) Classification. This process assigns a new observation to a category based on
training data (Alpaydin 2014, Kotsiantis 2007). A common example of classification is the
automated sorting of spam and non-spam email. ML techniques that are known to be good
classifiers include Random Forest,  Support  Vector  Machines,  and Bayesian Classifiers,
which will  also output the probability that the observation belongs to the inferred class.
Classification tasks in the natural sciences include the automated identification of species
using recorded echolocation calls (Armitage and Ober 2010) and monitoring river water
quality (Walley and Džeroski 1996), which have been performed using a Random Forest
and a Bayesian Classifier, respectively. A linear discriminant analysis is an example of a
traditional statistical method that can perform a classification task (Sokal and Rohlf 2011).

Task 3) Clustering. This task is similar to classification, but the machine is not given training
data to learn what the classes are (Jain 2010). It is expected to infer the classes from the
data. This task clusters data into groups such that objects in the same group are more
similar than objects between groups. Each cluster is then an inferred class. Clusters have a
situation-specific definition, thus there are several different clustering strategies available
(e.g.  hierarchical  clustering,  centroid  clustering,  etc).  This  task  is  often  used  for data
exploration and knowledge discovery before another ML technique is applied. The Support
Vector Machine and Artifical Neural Network (in the form of a Self Organizing Map) are two
types of ML techniques that can perform a clustering task (Du 2010, Ben-Hur et al. 2001).
Clustering can be used in the natural sciences to detect rare events (Omar et al. 2013),
such as identifying a bird call  in hours of  streaming remote sensor data (Kasten et al.
2010).

Task 4) Rule Induction. This task extracts a set of formal rules from a set of observations,
which can be used to make predictions about new data. Fuzzy Inference and some Tree-
based ML techniques use rule induction to make predictions. Genetic Algoriothms can be
used to infer rules (Fidelis et al. 2000, Sastry et al. 2013). Rule induction is a three-step
process of 1) feature construction, where the features are turned into binary features, 2)
rule construction, where features are searched for the combination that is most predictive
for a class, and 3) hypothesis construction, where sets of individual rules are combined
(Fürnkranz et al. 2012a) . Rule induction has been used in the natural sciences to predict
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microbial  biomass  and  enzyme  activity  in  soil  (Tscherko  et  al.  2007)  and  develop
biodegradation models for industrial chemicals (Gamberger et al. 1996 ). A good example
of overlap between categories of tasks and techniques is the decision tree, which uses rule
induction to perform a classification task.

Machine Learning Limitations

As with any technique, a working knowledge of the limitations of ML is necessary for proper
application (Domingos 2012). Some limitations result from user misconceptions and some
result from not recognizing problematic data. There are three major categories of mistakes
that result from misconceptions of ML practitioners.

 

a

 

b

Figure 2. 

Comparison of performance of two algorithms (grey lines) on hypothetical training (A) and test
(B) data (black points).
a: Training  Data.  Algorithm 1  (solid  line)  models  the  training  data  perfectly,  with  no  error.
Algorithm 2 (dashed line) is much more generalized and does not model the training data as
well as Algorithm 1.
b: Test Data. Algorithm 1 (solid line) modeled the training data perfectly, but has very high
error on the test data. Algorithm 2 had a higher error on the training data, but models the test
data with a reasonably low error. Algorithm 1 is an example of overfitting. Algorithm 2 is a
much better real-world predictor.
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1) Demanding Perfection. Algorithms that perfectly model training data are not very useful.
This is due to overfitting and it happens when an algorithm is so good at modeling the
training data that it does not perform well in the "real world" (Fig. 2Hawkins 2004). The
prediction error given by the training data might be low, but the prediction error given by the
test data, called the generalization error, is the measure of how well the algorithm will do in
a real-world application. When a model is overfit, the prediction error is much lower on the
training data than the test data. In general, as performance on the training data increases,
performance on the test data will increase only to a point before decreasing (Fig. 3).

2) Favoring Complexity Over Simplicity. It is important for a problem to be addressed with
just the right amount of complexity and this varies according to the nature of the problem
and the data  (e.g.  Merow et  al.  2014).  A more complex algorithm will  not  necessarily
outperform a simpler algorithm (Olden et al. 2008, Domingos 2012). This misconception is
related to overfitting because one way to improve model performance is to make it more
complex, but that results in an ungeneralizable model. In many circumstances, more data
with a simpler algorithm is better than a more complex algorithm (Domingos 2012). An
iterative  approach  is  often  best,  transitioning  from  simple  to  complex  techniques  and
comparing the results.

3)  Including  As  Many  Features  As  Possible.  It  can  be  difficult  to  know a priori which
features  are  important  predictors  in  a  given  problem,  but  including  a  large  number  of
features in a model (i.e. a shotgun approach), especially features that are not relevant, can
make a model a poor predictor Keogh and Mueen 2011. This is because as the number of
features increases, learners need a rapidly increasing amount of training data to become
familiar with all combinations. As a result, algorithms with fewer features are often better
predictors than algorithms using many features. This is often referred to as the Curse of

 
Figure 3. 

As algorithm performance on training data increases, performance on test data increases only
to a certain point (dashed line). Increases in performance on training data beyond this point
results in overfitting.
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Dimensionality and can be addressed with feature selection or feature extraction (types of
dimensionality  reduction)  before training the algorithm (Domingos 2012).  Both of  these
methods reduce the number of features to a subset of the most important variables, either
by identifying irrelevant and redundant features or by creating new, aggregate features.

The  second  type  of  limitation  results  from  not  recognizing  imperfections  in  data  sets
(Kotsiantis et al. 2006). Problematic data are more the norm than the exception in real-
world  applications.  Not  recognizing  and addressing  this  fact  can  cause  serious
complications. The following are common data problems.

1) Class imbalance. This problem occurs when one or more classes are underrepresented
compared to the others (Japkowicz and Stephen 2002, Chawla 2005). With severe class
imbalance, the distribution of the classes can vary broadly between the training and test
sets, resulting in a non-generalizable model. There are no definitive rules about exactly
when class imbalance is a problem or how to address it. A common solution is to balance
the classes through upsampling or downsampling. Another coping strategy is to change the
method  of  evaluation  to  more  appropriately  weight  the  correct  inference  of  an
underrepresented class (Japkowicz and Stephen 2002).

2)  Too many categories.  This problem is  related to the Curse of  Dimensionality  and it
occurs  when  a  category  has  a  high  number  of  distinct  values  (i.e.  high  cardinality,
Moeyersoms and Martens 2015). High-cardinality categories (such as zip code or bank
account number) can be very informative, but can also increase the number of dimensions
and thus decrease performance. One way to cope with a high-cardinality category is to
combine levels using domain knowledge. For example, in the category "Taxon", instead of
having a value for every species, have a single value for every Genus or higher rank.
Another  way  to  address  high-cardinality  is  through  data  preprossessing  and
transformations  that  reduce the  number  of  levels  in  the  category  (Micci-Barreca 2001,
Moeyersoms and Martens 2015).

3) Missing data. Different types of learners and problems have different levels of tolerance
for missing data during training, testing, and prediction (see discussion of ML techniques
below). There are several methods for applying ML techniques to data with missing values
(Saar-Tsechansky and Provost 2007, Gantayat et  al.  2014).  Techniques for coping with
missing data include imputation, removal of the instance, or segmentation of the model
(Saar-Tsechansky  and  Provost  2007,  Gantayat  et  al.  2014,  Jerez  et  al.  2010).  The
segmentation approach involves removing the features that correspond to the missing data
(Gantayat et al. 2014). In some cases it may be worthwhile to acquire the missing data
through more testing, sampling, or experimentation.

4) Outliers. If the observations are real and not the result of human error, outliers can be an
important source of insight.  They only become a problem when they go unnoticed and
models  are applied to  a  data  set  as  though outliers  are not  present.  There are many
methods for outlier detection that are recommended as a preprocessing step before ML
(Escalante 2005).
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Machine Learning Techniques

Tree-based Methods 

Tree-based ML methods include decision trees, classification trees, and regression trees
(Olden et al. 2008, Hsieh 2009, Kampichler et al. 2010). For these methods, a tree is built
by iteratively splitting the data set based on a rule that results in the divided groups being
more homogeneous than the group before (Fig. 4). The rules used to split the tree are
identified by  an  exhaustive  search  algorithm and give  insight  into  the  workings  of  the
modeled system. A single decision tree can give vastly different results depending on the
training data and typically has low predictive power (Iverson et al. 2004, Olden et al. 2008,
Breiman 2001a). Thus, several ensemble-tree methods have been developed to improve
predictive power by combining the results of multiple trees, including boosted trees and
bagged trees (Breiman 1996, De’ath 2007). A boosted tree results from a pool of trees
created by iteratively fitting new trees to minimize the residual errors of the existing pool
(De’ath 2007). The final boosted tree is a linear combination of all the trees (Elith et al.
2008). Bagging is a method that builds multiple trees on subsamples of the training data
(bootstrap with replacement) and then averages the predictions from each tree to get the
bagged predictions (Breiman 1996, Knudby et al. 2010a).

Random Forest is a relatively new tree-based method that fits a user-selected number of
trees to a data set and then combines the predictions from all trees (Breiman 2001a). The
Random Forest algorithm creates a tree for a subsample of the data set. At every decision
only a randomly selected subset of variables are used for the partitioning. The predicted

 
Figure 4. 

Decision and Classification Tree Schematic: Tree-based machine learning methods infer
rules for splitting a data set into more homogeneous data sets until  a specified number of
terminal classes or maximum variance within the terminal classes is reached. The inferred
splitting rules can give additional information about the system being studied.
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class of an observation in the final tree is calculated by majority vote of the predictions for
that observation in all trees with ties split randomly.

Ensemble tree-based methods,  especially  Random Forest,  have been demonstrated to
outperform traditional  statistical  methods  and  other  ML  methods  in  earth  science  and
ecology applications (Cutler et al. 2007, Kampichler et al. 2010, Knudby et al. 2010a). They
can cope with small sample sizes, mixed data types, and missing data (Cutler et al. 2007,
Olden et al. 2008). The single-tree methods are fast to calculate and the results are easy to
interpret (Kampichler et al. 2010), but they are susceptible to overfitting (Olden et al. 2008)
and  frequently  require  “pruning”  of  terminal  nodes  that  do  not give  enough  additional
accuracy to  justify  the increased complexity  (Breiman et  al.  1984,  Garzón et  al.  2006,
Cutler et al. 2007, Olden et al. 2008, Džeroski 2009). The ensemble-tree methods can be
computationally expensive (Cutler et al. 2007, Olden et al. 2008, Džeroski 2009), but resist
overfitting (Breiman 2001a). Random Forest algorithms can provide measures of relative
variable importance and data point similarity that can be useful in other analyses (Cutler et
al. 2007), but can be clouded by correlations between independent variables (Olden et al.
2008).  Implementing  Random Forest  is  relatively  straightforward.  Only  a  few,  easy-to-
understand parameters need to be provided by the user (Kampichler et al. 2010), but the
final Random Forest does not have a simple representation that characterizes the whole
function (Cutler et al. 2007). Tree methods also do not give probabilities for results, which
means that data are classified into categories, but the probability that the classification is
correct is not given.

For a more detailed description of tree-based methods see Breiman et al. 1984, Breiman
2001b, Loh 2014 and chapter 8 in James et al. 2013.

Artificial Neural Networks 

An Artificial  Neural  Network (ANN) is  a ML approach inspired by the way neurological
systems process information (Recknagel 2001, Olden et al. 2008, Boddy and Morris 1999,
Hsieh 2009). There are many types of ANNs, but only a few are typically used in earth
science and ecology, such as the multi-layer, feed-forward neural network, which will be the
focus of this section (Pineda 1987, Kohonen 1989, Chon et al. 1996, Recknagel 2001, Lek
and Guégan 2000). A multi-layer ANN has three parts: 1) the input layer, which receives
the independent  variables 2)  the output  layer,  where the results  are found,  and 3)  the
hidden layer, where the processing occurs (Fig. 5). Each layer is made up of several units
(neurons). Each unit is connected to all the other units in the neighboring layer, but not the
units in the same layer or in non-adjacent layers. Feed-forward ANNs allow data to flow in
one direction, from input to output only. The number of units in the hidden layer can be
changed by the user to optimize the trade-off between overfitting and variance (Camargo
and Yoneyama 2001, Kon and Plaskota 2000. Too many units in this layer can lead to
overfitting.  Each connection between units has a weight.  Training the ANN involves an
iterative search for an optimal set of connection weights that produces an output with a
small error relative to the target. After every iteration, the weights are adjusted to bring the
output  closer  to  the target  using a  back-propagation algorithm.  Bayesian methods and
Genetic Algorithms can also be used to find the optimal connection weights (Bishop 2006,
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Kotsiantis et al. 2006, Siddique and Tokhi 2001, Yen and Lu 2000). Performance can be
sensitive  to  initial  connection  weights,  which  are  typically  chosen  randomly  in  the
beginning,  and the number of  hidden units,  so multiple networks should be processed
while varying these parameters (Olden et al. 2008).

ANN can be a powerful modeling tool when the underlying relationships are unknown and
the data are imprecise and noisy (Lek and Guégan 1999). Interpretation of the ANN can be
difficult  and  neural  networks  are  often  referred  to  as  a  “black  box”  method  (Lek  and
Guégan 1999, Olden et al.  2008, Wieland and Mirschel 2008, Kampichler et al.  2010).
ANNs can be more complicated to implement and are more computationally expensive
than tree-based ML methods (Olden et al. 2008), but ANNs can accommodate a major
gain in computational speed with a minor sacrifice in accuracy. For example, an ANN with
one fourth the computational cost of a traditional satellite data retrieval algorithm (that uses
an iterative method) has an accuracy nearly identical (+ 0.1) to the traditional algorithm
(Young 2009). Overfitting can be a problem (Kampichler et al. 2010). Many ANNs mimic
standard statistical  methods (A.  Fielding pers.  comm.),  so a good practice while using
ANNs is to also include a rigorous suite of validation tests and a general linear model for
comparison (Özesmi et al. 2006).

For a more detailed description of a multi-layer, feed-forward ANN with back propagation
see section 4.1 in Kotsiantis et al. 2006 and section 5 in Bishop 2006. For more information
on ANNs in general see Hagan et al. 2014.

 
Figure 5. 

Artificial Neural Network Schematic: A neural network is made up of three layers (input,
hidden, output). Each layer contains interconnected units (neurons). Each connection has an
assigned connection weight.  The number  of  hidden units  and the connection weights  are
iteratively improved to minimize the error between the output and the target.
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Support Vector Machines 

A Support Vector Machine (SVM) is a type of binary classifier. Data are represented as
points in space and classes are divided by a straight line "margin". The SVM maximizes the
margin by placing the largest possible distance between the margin and the instances on
both sides (Fig. 6a; Moguerza and Muñoz 2006, Rasmussen and Williams 2006, Zhao et
al. 2008, Hsieh 2009, Kampichler et al. 2010, Zhao et al. 2011). A new data point would be
classified according to which side of the margin it fell. SVMs are trained iteratively using the
Sequential Minimal Optimization algorithm, which breaks the binary classification problem
into several sub-problems and finds the maximum distance between the margin and the
instances in each class (Keerthi and Gilbert 2002).

SVM is  well  suited  for  problems with  many features  compared to  instances  (Curse  of
Dimensionality) and is capable of avoiding problems with local minima (Kotsiantis et al.

 

a

 

b

Figure 6. 

Support Vector Machine Schematic

a: This  simplified  schematic  shows  the  margin  (black  line)  dividing  the  data  set  into  two
classes. A new datum (grey), will be classified according to its position relative to the margin.
b: If the data are noisy, and not easily separated, a “soft margin” (dotted lines) can be used to
separate the two classes.
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2006). Because most real-world data cannot be separated with a straight line, significant
additional processing may be required. If the classes overlap only slightly, a “buffer zone”
or "soft margin" can be created around the hard decision boundary (  Fig. 6bVeropoulos et
al.  1999). Another solution is to map the data onto a higher-dimensional feature space
wherein a linear boundary can be found. An algorithm called a kernel function is used to
translate data into the new feature space. Choosing the correct kernel function is important
(Kotsiantis  et  al.  2006)  and  can  slow the  training  process.  SVMs are  excellent  binary
classifiers when given labeled training data. Problems with more than one class, must be
divided into multiple binary classification problems. When data are unlabeled, SVMs can be
used for clustering, and this is called Support Vector Clustering (Ben-Hur et al. 2001).

For a more detailed description of SVMs see section 6 in Kotsiantis et al. 2006 and chapter
9 in James et al. 2013. For a discussion of kernel functions see Genton 2001.

Genetic Algorithm 

Genetic Algorithms (GA) are based on the process of evolution in natural systems in that a
population of competing solutions evolves over time to converge on an optimal solution
(Holland 1975, Goldberg and Holland 1988, Koza 1992, Haupt and Haupt 2004, Olden et
al.  2008).  Solutions  are  represented  as  “chromosomes”  and  model  parameters  are
represented as “genes” on those chromosomes (Fig. 7). Training a GA has four steps: 1)
random potential solutions are generated (chromosomes), 2) potential solutions are altered
using  “mutation”,  and  “recombination”,  3)  solutions  are  evaluated  to  determine  fitness
(minimizing error), and 4) the best solutions cycle back to step 2 (Holland 1975, Mitchell
1998,  Haefner  2005).  Each  cycle  represents  a  “generation”.  Each  chromosome  is
evaluated  using  a  fitness  function  that  scores  its  accuracy  (Reeves  and  Rowe 2002).
Depending on the nature of the problem the GA is trying to solve, the chromosome can be
strings of bits, real values, rules, or permutations of elements (Recknagel 2001).

An advantage of GA is the removal of the often arbitrary process of choosing a model to
apply to the data (Jeffers 1999) and can be used to find the characteristics of other ML
techniques, such as the weights and architectures of ANNs (Siddique and Tokhi 2001, Yen
and Lu 2000).  GAs have seen a rise in  popularity  due to development of  the Genetic
Algorithm for Rule-Set Prediction (GARP) used to predict species distributions (Stockwell
and Noble 1992). GAs are very popular in hydrology (see Mulligan and Brown 1998 for
description of how GA was used to find the Pareto Front) and meteorology (Haupt 2009).
GAs are able to cope with uneven sampling and small sample sizes (Olden et al. 2008).
GAs were developed with broad application in mind and can use a wide range of model
structures and model-fitting approaches (Olden et al. 2008). As a result, a larger burden is
placed on the user to select complicated model parameters with little guidance, and the
fixed-length “chromosomes” can limit the potential range of solutions (Olden et al. 2008 ).
GAs are not best for all problems and many traditional statistical techniques can perform
just  as  well  or  better  (Olden  et  al.  2008).  GARP,  in  particular,  can  be  susceptible  to
overfitting (Lawler et al. 2006, Elith et al. 2008).

For a more detailed discussion of GA see Mitchell 1998 and Sastry et al. 2013.
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Fuzzy Inference Systems 

Fuzzy inference methods, such as Fuzzy Logic and Inductive Logic Programming, provide
a practical  approach to  automating complex analysis  and inference in  a long workflow
(Williams et al. 2009). Given a set of training examples, a fuzzy inference system will find a
set of rules that can be used for prediction of new instances. The output is in terms of a
natural  language set of  “if/then” rules (Wieland 2008).  For example, a set of  rules that
predict when a child receives an allowance might be "if the room is clean and the behavior
is polite, then the allowance is dispensed" (Fig. 8). The if/then rules are created through an
algorithm that  iteratively  selects  each  class  and  refines  the  if-statement  until  only  the
selected class remains (e.g. Džeroski 2009). Two examples of these algorithms are FOIL
and PROGOL (Muggleton 1995, Quinlan and Cameron-Jones 1995. The National Center
for  Atmospheric  Research  (NCAR)  has  developed  three  fuzzy  inference  algorithms  to
address a complex problem in meteorology (Williams et al. 2009) and these methods have
been used to predict landslide susceptibility (Pradhan 2010).

Fuzzy inference systems perform a rule induction task. The resulting rules can be easy to
understand and interpret, as long as the rule sets are not too large, but overfitting can be a
problem (Kampichler et al. 2010). Because fuzzy inference systems use a larger pool of
possible rules and are more expressive, they can be more computationally demanding.

For more information about fuzzy inference systems and rule induction see Fürnkranz et al.
2012b and Wang et al. 2007.

 
Figure 7. 

Genetic Algorithm Schematic: In this simplified schematic of a genetic algorithm, the five
potential solutions, or “chromosomes”, undergo mutation and recombination. Then the best
performing solutions are selected for another iteration of mutation and recombination. This
cycle is repeated until an optimal solution is found.
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Bayesian Methods 

Bayesian ML methods are based on Bayesian statistical inference, which started in the
18th century with the development of Bayes’ theorem (Laplace 1986). These methods are
based on expressing the true state of the world in terms of probabilities and then updating
the probabilities as evidence is acquired (Bishop 2006). In most cases, it is important to
know the probability that a new datum belongs to a given class, not just the inferred class.
The Bayesian approach can contribute to several ML and traditional statistical techniques,
but  this  section  will  focus  on  Bayesian  Classifiers.  A  Bayesian  classifier  calculates  a
probability density for each class (Fig. 9). The probability density is a curve showing, for
any given value of the independent variable, the likelihood of being a member of that class
(Fig. 9). The new datum is assigned to the class with the highest probability. The values of
the independent variable that have an equal probability of being in either class are known
as the decision boundary and this marks the dividing line between the classes. In the real
world, it  can be difficult to calculate these a priori probabilities and the user must often
make a best-guess.

A Bayesian classifier gives good results in most cases and requires fewer training data
compared to other ML methods (Kotsiantis et al. 2006). It is useful when there are more
than two distinct classes. The disadvantage is that it  can be very hard to specify prior
probabilities and results can be quite sensitive to the selected prior.  This method does
assume that variables are independent, which is not always true (e.g., Lorena et al. 2011).
Some Baysian classifiers have Gaussian assumptions which may not be reasonable for the
problem at hand. Another issue is that if a specific feature never appears in a class, the
resulting zero probability will  complicate calculations; therefore, a small probability must
often be added, even if the feature does not appear in the class.

 
Figure 8. 

Fuzzy Inference Rule Set. This is a simplified example of an "if/then" rule set derived from
data (in the table) using fuzzy inference. The inferred rules can be used to predict when an
allowanced with be dispensed.
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For a more detailed discussion of Bayesian Classifiers and Bayesian Networks see section
5.1 in Kotsiantis et al. 2006.

 

a

 

b

Figure 9. 

Bayesian Classifier Schematic: This diagram shows a simplified schematic of a Bayesian
classifier working to assign a new datum (white triangle)  to one of  two classes (grey and
black).
a: Probability Density Plot: A Bayesian classifier calculates a probability density for each class
(solid and dotted curve) across a range of values for the new datum (white triangle), which is
classified according to which probability is highest at its value (black). The value for which the
datum has an equal probability of being in both classes is called the decision boundary (black
line).
b: Data Plot: An object to be classified (white) can belong to one of two groups (grey or black).
This method would classify the object within the group with the highest probability of being
correct. In this example, the white item would be classified as a member of the black group
because the probability is higher (Black = 8/17 * 2/8 and Grey = 9/17 *1/9)
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Using ML in Ecology and Earth Science

For many researchers, machine learning is a relatively new paradigm that has only recently
become accessible with the development of modern computing. While the adoption of ML
methods in earth science and ecology has been slow, there are several published studies
using ML in these disciplines (e.g., Park and Chon 2007). The following is a brief review of
the different published applications of ML in earth science and ecology.

Habitat Modeling and Species Distribution 

Understanding the habitat  requirements of  a species is  important  for  understanding its
ecology and managing its conservation. Habitat modelers are interested in using multiple
data sets to make predictions and classifications about habitat characteristics and where
taxa are  likely  to  be  located or  engaging in  a  specific  behavior  (e.g.,  nesting  Fielding
1999b, Cutler et al. 2007). The rule-sets developed are referred to as Species Distribution
Models (SDM) and can use a wide variety of ML methods to make their predictions or none
at all (Guisan and Thuiller 2005). Typically, an algorithm would be trained using a data set
matching environmental variables to taxon abundance or presence/absence data. If  the
algorithm tests well,  it  can be given a suite of  environmental  variables from a different
location to make predictions about what taxa are present. This technique has been used to
identify  current  suitable  habitat  for  specific  taxa,  model  future  species  distributions
including predicting invasive and rare species presence, and predict biodiversity of an area
(Tan and Smeins 1996,  Kampichler  et  al.  2000,  Cutler  et  al.  2007,  Olden et  al.  2008,
Knudby et al. 2010a). Common tools include Random Forest (Cutler et al. 2007, Peters et
al. 2007), classification and decision trees (Ribic and Ainley 1997, Bell 1999, Kobler and
Adamic  2000,  Vayssières  et  al.  2000,  Debeljak  et  al.  2001,  Miller  and Franklin  2002),
neural networks (MASTRORILLO et al. 1997, Guégan et al. 1998, Fielding 1999a, Manel et
al. 1999, Brosse et al. 2001, Thuiller 2003, Dedecker et al. 2004, Segurado and Araújo
2004, Özesmi et al. 2006), genetic algorithms (D'Angelo et al. 1995, Stockwell and Peters
1999, Stockwell 1999, McKay 2001, Peterson et al. 2002, Wiley et al. 2003, Termansen et
al. 2006), support vector machines (Pouteau et al. 2012), and Bayesian classifiers (Fischer
1990, Brzeziecki et al. 1993, Guisan and Zimmermann 2000).

Species Identification 

Identifying taxa can require specialized knowledge only possessed by a very few and the
data set requiring expert curation can be large (e.g., automated collection of images and
sounds). Thus, the expert annotation step is a major bottleneck in biodiversity studies. In
order to increase throughput, algorithms are trained on images, sounds, and other types of
data labeled with taxon names. (For more information about automated taxon identification
specifically, see Edwards et al. 1987 and MacLeod 2007). The trained algorithms can then
automatically  annotate  new  data.  This  technique  has  been  used  to  identify  plankton,
spiders, and shellfish larvae from images (Boddy and Morris 1999, Do et al. 1999, Sosik
and Olson 2007,  Goodwin et  al.  2014).  Bacterial  taxa have been identified from gene
sequences  (Wang  et  al.  2007).  Audio  files  of  amphibian,  bird,  bat,  insect,  elephant,
cetacean, and deer sounds have been classified to species (Parsons and Jones 2000,
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Jennings et  al.  2008, Chesmore 2004, Acevedo et  al.  2009, Armitage and Ober 2010,
Kasten et al. 2010). Fish and algal species have been identified using acoustic (Simmonds
et al. 1996) and optical characteristics (Balfoort et al. 1992, Boddy et al. 1994). ML has
been used to differentiate between the radar signals of birds and abiotic objects (Rosa et
al. 2015). In some cases, individuals of the same species can be distinguished even if the
individuals themselves are unknown a priori (Reby et al. 1998, Fielding 1999b). Common
tools include support vector machines (Fagerlund 2007, Sosik and Olson 2007, Acevedo et
al. 2009, Armitage and Ober 2010, Goodwin et al. 2014, Rosa et al. 2015), Random Forest
(Armitage and Ober 2010, Rosa et al. 2015), Bayesian classifiers (Fielding 1999a, Wang et
al.  2007),  genetic  algorithms (Jeffers 1999),  and neural  networks (Balfoort  et  al.  1992,
Boddy  et  al.  1994,  Simmonds  et  al.  1996,  Do et  al.  1999,  Parsons  and  Jones  2000,
Jennings et al. 2008, Armitage and Ober 2010, Rosa et al. 2015).

Remote Sensing 

Satellite images and other data gathered from sensors at great elevation (e.g., LIDAR) are
an excellent way to gather large amounts of data about Earth over broad spatial scales. In
order  to  be  useful,  these  data  must  go  through  some  minimum  level  of  processing
(Atkinson and Tatnall 1997) and are often classified into land cover or land use categories
(Guisan and Zimmermann 2000). ML methods have been developed to automate these
laborious  processes  (Lees  and  Ritman  1991,  Fitzgerald  and  Lees  1992,  Lees  1996,
Atkinson and Tatnall 1997, Guisan and Zimmermann 2000, Ham et al. 2005, Pal 2005,
Gislason et al. 2006, Lakshmanan 2009). ML methods can be used to infer geophysical
parameters from remote sensing data, such as inferring the Leaf Area Index from Moderate
Resolution Imaging Spectrometer data (Rumelhart et al. 1986, Hsieh 2009, Krasnopolsky
2009). Sometimes remote sensing data and the parameters inferred from them can require
spatial interpolation in the vertical or horizontal dimension, which is often performed using
ML methods (Krasnopolsky 2009, Li  et  al.  2011).  Common tools for  classifying remote
sensing images include Random Forest (Knudby et al. 2010b, Duro et al. 2012), support
vector machines (Durbha et al. 2007, Knudby et al. 2010b, Zhao et al. 2011, Duro et al.
2012, Mountrakis et al.  2011),  neural  networks (Rogan et al.  2008),  genetic algorithms
(Haupt 2009), and decision trees (Huang and Jensen 1997). Random forest and support
vector machines have been used for spatial interpolation of environmental variables (Li et
al. 2011). Artificial neural networks have been used to infer geophysical parameters from
remote sensing data (Hsieh 2009, Rumelhart et al. 1986, Krasnopolsky 2009).

Resource Management 

Making  decisions  about  conservation  and  resource  management  can  be  very  difficult
because there is often not enough data for certainty and the consequences of being wrong
can be disastrous. ML methods can provide a means of increasing certainty and improving
results, especially techniques that incorporate Bayesian probabilities. Several algorithms
have been applied to water (Maier and Dandy 2000, Haupt 2009), soil (Henderson et al.
2005, Tscherko et al. 2007), and biodiversity/wildlife management (Baran et al. 1996, Lek
et al. 1996b, Lek et al. 1996a, Giske et al. 1998, Guégan et al. 1998, Spitz and Lek 1999,
Chen et al. 2000, Vander Zanden et al. 2004, Jones et al. 2006, Sarkar et al. 2006, Worner

18 Thessen A



and Gevrey 2006, Cutler et al. 2007, Quintero et al. 2014, Bland et al. 2014). ML methods
have been used to  model  population  dynamics,  production,  and biomass in  terrestrial,
aquatic,  marine,  and  agricultural  systems  (Scardi  1996,  Recknagel  1997,  Scardi  and
Harding 1999, Recknagel et al. 2000, Schultz et al. 2000, Džeroski 2001, Recknagel et al.
2002, McKenna 2005, Muttil and Lee 2005). Some specific examples of ML applications in
resource management and conservation include 1) inference of IUCN (International Union
for Conservation of  Nature) conservation status of  Data Deficient  species (Bland et  al.
2014,  Quintero  et  al.  2014),  2)  predicting  farmer  risk  preferences  (Kastens  and
Featherstone  1996),  3)  predicting  the  production  and  biomass  of  various  animal
populations (Brey et al. 1996), 4) examining the effect of urbanization on bird breeding (Lee
et al. 2007), 5) predicting disease risk (Furlanello et al. 2003, Guo et al. 2005), and 6)
modeling  ecological  niches  (Drake  et  al.  2006).  Being  able  to  make  these  types  of
predictions  and  inferences  can  help  focus  conservation  efforts  for  maximum  impact
(Knudby et al. 2010a, Guisan et al. 2013). Common ML methods for resource management
include genetic algorithms (Haupt 2009), neural networks (Brey et al. 1996, Kastens and
Featherstone 1996, Recknagel 1997, Giske et al. 1998, Guégan et al. 1998, Schultz et al.
2000, Lee et al. 2007), support vector machines (Guo et al. 2005, Drake et al. 2006), fuzzy
inference systems (Tscherko et al. 2007), decision trees (Henderson et al. 2005, Jones et
al. 2006), and Random Forest (Furlanello et al. 2003, Cutler et al. 2007, Quintero et al.
2014).

Forecasting 

Discovery  of  deterministic  chaos  in  meteorological  models  (Lorenz  1963)  led  to
reconsideration of the use of traditional statistical methods in forecasting (Pasini 2009).
Today, predictions about weather are often made using ML methods. The most common
ML methods used in meteorological forecasting are genetic algorithms, which have been
used to model rainy vs non-rainy days (Haupt 2009) and severe weather (Hsieh 2009).
Forecasting can be important for applications other than weather prediction. In atmospheric
science,  neural  networks  are  able  to  find  dynamics  hidden  in  noise  and  successfully
forecast  important  variables  in  the  atmospheric  boundary  layer  (Pasini  2009).  The
oceanography  community  makes  extensive  use  of  neural  networks  for  forecasting  sea
level, waves, and sea surface temperature (Wu et al. 2006, Hsieh 2009). In addition to
being directly used for forecasting, neural networks are commonly used for downscaling
environmental and model output data sets used in making forecasts (Casaioli et al. 2003,
Hsieh and Hsieh 2003, Marzban 2003).

Environmental Protection and Safety 

Just  as  ML  can  help  resource  managers  make  important  decisions  with  or  without
adequate data coverage, environmental protection and safety decisions can be aided with
ML methods when data are sparse. ML has been used to classify environmental samples
into inferred quality classes in situations where direct analyses are too costly (Džeroski
2001).  The  mutagenicity,  carcinogenicity,  and  biodegradability  of  chemicals  have  been
predicted based on structure  without  lengthy lab work  (Džeroski  2001).  Sources of  air
contaminants have been identified and characterized in spite of lack of a priori knowledge

Adoption of Machine Learning Techniques in Ecology and Earth Science 19



about source location, emission rate, and time of release (Haupt et al. 2009a). ML can
relate  pollution  exposure  to  human  health  outcomes  (Džeroski  2001).  Common  ML
methods  for  environmental  protection  include  genetic  algorithms  (Haupt  et  al.  2009a),
Bayesian classifiers (Walley et al. 1992), neural networks (Ruck et al. 1993, Walley and S.
1996, Walley et al. 2000), and fuzzy inference systems (Srinivasan et al. 1997, Džeroski et
al. 1999, Džeroski 2001).

Climate Change Studies 

One of the more pressing societal problems is the mitigation of and adaptation to climate
change. Policy-makers require well-formed predictions in order to make decisions, but the
complexity of the climate system, the interdisciplinary nature of the problem, and the data
structures prevents the effective use of linear modeling techniques. ML is used to study
important processes such as El Niño, the Quasi Biennial Oscillation, the Madden-Julian
Oscillation, and monsoon modes (Cavazos et al. 2002, Hsieh 2009, Krasnopolsky 2009,
Pasini 2009), and to predict climate change itself (Casaioli et al. 2003, Hsieh and Hsieh
2003, Marzban 2003, Pasini 2009). Predictions about the greenhouse effect (Seginer et al.
1994) and environmental change (Guisan and Zimmermann 2000) have also been made
using  ML.  A  very  common  use  of  ML  in  climate  science  is  downscaling  and  post
processing  data  from  General  Circulation  Models  (refs  in  Hsieh  2009,  Pasini  2009).
Ecological niche modeling and predictive vegetation mapping (as discussed above) can
help predict adaptation to climate change (Wiley et al. 2003, Iverson et al. 2004). The most
commonly used ML method in climate change studies is the neural network (Guisan and
Zimmermann 2000, Pasini 2009).

Discussion

How can ML advance ecology and earth science?

The application of ML methods in ecology and earth science has already demonstrated the
potential for increasing the quality and accelerating the pace of science. One of the more
obvious ways ML does this  is  by coping with data gaps.  The Earth is  under-sampled,
despite spending hundreds of millions of dollars on earth and environmental science (e.g.,
Webb et al. 2010). Where possible, ML allows a researcher to use data that are plentiful or
easy to collect  to infer  data that  are scarce or hard to collect  (e.g.,  Wiley et  al.  2003,
Edwards et al. 2005, Buddemeier et al. 2008). Conservation managers are particularly well
positioned to take advantage of ML via SDMs in invasive species management, critical
habitat identification, and reserve selection (Guisan et al.  2013). Depending on the ML
method used, one can also learn more about how a system works, for example through the
Random Forest Variable Importance analysis. ML methods let the data tell the story and
work backwards to understand the system while many numerical models impose a set of
equations that may or may not be adequate. Another important way ML can fill in data gaps
is through downscaling and performing spatial interpolation (Li et al. 2011). There will never
be enough research funding to sample everything all of the time. ML can be a tractable
method for addressing the data gaps that prevent scientific progress.
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ML can accelerate the pace of science by quickly performing complex classification tasks
normally  performed  by  a  human.  A  bottleneck  in  many  ecology  and  earth  science
workflows are the manual steps performed by an expert, usually a classification task such
as identifying a species. Expert annotation can be even more time consuming when the
expert must search through a large volume of data, like a sensor stream, for a desired
signal (Kasten et al. 2010). Rather than having all of the data classified by an expert, the
expert only needs to review enough data to train and test an algorithm. This bottleneck has
been addressed for  some types of  taxon identification (Cornuet et  al.  1996, Sosik and
Olson 2007, Acevedo et al. 2009, Armitage and Ober 2010), finding relevant data in sensor
streams (Kasten et al. 2010), and building a reference knowledgebase for image analysis
(Huang  and  Jensen  1997).  In  addition  to  relieving  a  bottleneck,  ML  methods  can
sometimes perform tasks more consistently than experts, especially when there are many
categories and the task continues over a long period of time (Culverhouse et al.  2003,
Jennings et al. 2008). In these cases, ML methods can improve the quality of science by
providing more quantitative and consistent data (Sutherland et al. 2004, Olden et al. 2008,
Acevedo et al. 2009).

As discussed above, ML techniques can perform better than traditional statistical methods
in some systems, but a direct comparison of performance between ML techniques and
traditional  statistical  methods  is  difficult  because  there  is  no  universal  measure  of
performance and results can be very situation-specific (Fielding 2007). The true measure
of the utility of a tool is how well it can make predictions from new data and how well it can
be generalized to  new situations.  Highly  significant  p-values,  R2 values,  and accuracy
measurements may not reflect this. A study comparing 33 classification methods (including
ML and traditional statistics) with 32 data sets found no real difference in performance and
suggested that choice of algorithm be driven by factors other than accuracy, such as the
characteristics of the data set (Lim et al. 2000). If the accuracy is not significantly improved
using ML, it may be better to use a traditional method that is more familiar and accepted by
peers  and  managers.  Best  practice  is  to  test  multiple  methods  (including  traditional
statistics) while probing the trade-off between bias and accuracy and choose the technique
that best fits the problem. In many natural systems, where non-linear and interaction effects
are common, a ML-based model may be more useful. Individual researchers need to select
a method based on the specific problem and the data at hand.

Why don’t more people use ML?

Even though ML can outperform traditional statistics in some applications (Manel et al.
1999, Kampichler et al. 2000, Segurado and Araújo 2004, Elith et al. 2006, Peters et al.
2007, Pasini 2009, Armitage and Ober 2010, Knudby et al. 2010a, Li et al. 2011, Zhao et
al. 2011, Bhattacharya 2013), the potential of ML methods in ecology and earth science
has not been exhausted (Olden et al. 2008). The reasons for this are social and technical.
New methods can be resisted by established scientists, which can delay wide-spread use
(Azoulay et al. 2015). ML methods (as well as some more complex statistical models) can
require a high degree of  math skill  to understand in detail,  which means either a long
familiarization phase or an acceptance of the algorithm as a “black box” (Kampichler et al.
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2010). ML methods are highly configurable; thus, it can be overwhelming for researchers to
choose  the  proper  test  for  the  job  (Kampichler  et  al.  2010).  Many  of  them  require
programming  skills  (e.g.  scikit-learn)  that  many  ecologists  lack  (Olden  et  al.  2008);
however,  tools  like  MatLab  and  R  have  developed  more  user-friendly  interfaces  and
lowered  the  barrier  to  adoption  for  many  users.  Alternatively,  many  of  the  traditional
statistical  methods are fast to calculate and give easy-to-interpret metrics, like p-values
(Olden et al. 2008, Kampichler et al. 2010). Traditional statistical methods are easier to find
as a  part  of  an  off-the-shelf  software  package with  a  user  interface  and much of  the
complicated inner workings pleasantly hidden. Traditional statistical methods are part of a
typical graduate and undergraduate education in the sciences whereas ML techniques are
not.  All  of  these make ML methods less  attractive  to  practicing  natural  scientists  than
traditional statistical methods.

Another barrier to using ML techniques is the need for adequate amounts of training and
test data within the desired range of prediction. This places an important constraint on the
application of ML to problems that have appropriate, annotated data sets available. For
example,  the  Google  image  recognition  algorithm  was  developed  using  1.2  million
annotated images (Simonite 2016). Rarely does a natural science domain have a quality,
annotated data set that large. In addition, the validity of a ML model is restricted to the
range represented by the training and test data. For example, a bird behavior model that
was trained only on data collected during the summer will  not be able to predict winter
behavior.  This  is  an  important  problem  in  the  natural  sciences,  where  the  need  for
extrapolation is  high (e.g.  predicting climate change).  The lack of  high-quality  data  for
model development has been cited as a major bottleneck in many fields of ML application
(e.g. Bewley et al. 2015, Thessen and Patterson 2011). There are techniques available for
developing a model  when the data set  is  small  (Corkill  and Gormley 2016),  but  some
methods (e.g., cross-validation, Bayesian) give a weaker estimate of model error (Guisan
and Zimmermann 2000, Hsieh 2009). Traditional statistical methods are validated using p
values and tend to require much less data to develop a useful  model.  Thus, it  can be
harder to validate a ML model than a traditional statistical model.

This combination of lack of formal education and important data restrictions can lead to
naive applications of ML techniques, which can increase resistence to their adoption.

Finally, communication between the ML research community and natural science research
community is poor (Wagstaff 2012). The financial sector is applying ML, suggesting that
communication  is  possible  when  the  potential  monetary  reward  is  great  enough.  (The
application of ML to the financial sector has had mixed results and uses only some of the
same ML techniques  discussed herein  Fletcher  2016.)  There  is  too  much reliance  on
abstract metrics in the ML research community and not enough consideration of whether or
not a particular ML advance will result in a real-world impact (Wagstaff 2012). The small
community of ecologists using ML to develop SDMs are not communicating the value of
their  research  to  decision-makers  and  accounts  of  SDMs  being  used  successfully  in
conservation  are  hidden  in  grey  literature  (Guisan  et  al.  2013).  Communication  and
collaboration between the ML community, the ecology community, and the earth science
community is poor.
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Next Steps

How can the use of ML methods in ecology and earth science be encouraged? One barrier
that has been partially lowered is the lack of tools and services to support the application of
ML in these domains. Use of ML algorithms built with user infrastructure, such as GRASS-
GIS (Garzón et al. 2006) and GARP (Stockwell and Noble 1992) is higher than algorithms
without such infrastructure. ML capabilities in R and MatLab have continued to make these
methods more user-friendly. Programming skills have become more common in the natural
sciences, but user interfaces are still very important for adoption of techniques.

Research scientists want to have a good understanding of the algorithms they use, which
makes  adoption  of  a  new  method  a  non-trivial  investment.  Reducing  the  cost  of  this
investment for ML techniques is an important part of encouraging adoption. One way to do
this  is  through  a  trusted  collaborator  who  can  simultaneously  guide  the  research  and
transfer skills. These collaborators can be difficult to find, but many potential partners can
be found in industry. A useful tool would be a publicly-available repository of annotated
data sets to act as a sandbox for researchers wanting to learn and experiment with these
methods,  similar  to  Kaggle  (https://www.kaggle.com/)  but  with  natural  science  data.
Random Forest is easier for a beginner to implement, gives easy to interpret results, and
has high performance on ecology and earth science classification problems (Prasad et al.
2006, Kampichler et al. 2010); thus, Random Forest would be a good starting point for a
ML novice. Students can be exposed to ML and command line programming through their
graduate education, eliminating the need for a costly time investment during their research
career. In addition, an improved statistical education for students would make them more
aware of the limitations imposed by rigid models and thus more open to trying ML for some
problems.  An  important  part  of  promoting  new techniques  is  recognizing  the  practical
needs of researchers and working within those boundaries to facilitate change.

Finally,  ML  successes  and  impacts  in  ecology  and  earth  science  need  to  be  more
effectively communicated and the results from ML analyses need to be easily interpreted
for decision-makers (Guisan et al. 2013). Research communities need to do a better job of
communicating across domains about the impact of their results (Wagstaff 2012). For best
communication  between  experts,  collaborations  should  begin  during  and  even  before
algorithm development to help properly define the problem being addressed, instead of
developing an algorithm in isolation (Guisan et al.  2013).  Once an algorithm has been
successfully used in a decision-making process, the results need to be reported as a part
of the published literature in addition to the grey literature.

Funding  agencies  can  facilitate  this  process  by  specifically  soliciting  new collaborative
projects (research projects, workshops, hack-a-thons, conference sessions) that apply ML
methods  to  ecology  and  earth  science  in  innovative  ways  and  initiatives  to  develop
education materials for natural science students. Proper implementation of ML methods
requires an understanding of the data science and the discipline that can best be achieved
through interdisciplinary collaboration.
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Conclusions

ML methods offer a diverse array of techniques, now accessible to individual researchers,
that  are well  suited to the complex data sets coming from ecology and earth science.
These methods have the potential to improve the quality of scientific research by providing
more accurate models and accelerate progress in science by widening bottlenecks, filling
data  gaps,  and  enhancing  understanding  of  how  systems  work.  Application  of  these
methods within the ecology and earth science domain needs to increase if society is to see
the benefit.  Adoption can be promoted through interdisciplinary collaboration, increased
communication,  increased formal  and informal  education,  and financial  support  for  ML
research.  Partnerships  with  companies  interested  in  environmental  issues  can  be  an
excellent source of knowledge transfer. A good introductory ML method is Random Forest,
which is easy to implement and gives good results. However, ML methods have limitations
and are not the answer to all problems. In some cases traditional statistical approaches are
more appropriate (Meynard and Quinn 2007, Olden et al. 2008). ML methods should be
used with discretion.

There are many more types of ML methods and subtly different techniques than what has
been discussed in this paper. Implementing ML effectively requires additional background
knowledge. A very helpful series of lectures by Stanford Professors Trevor Hastie and Rob
Tibshirani  called “An Introduction to  Statistical  Learning with  Applications in  R”  can be
accessed online for free and gives a general introduction to traditional statistics and some
ML methods.  Kaggle  (https://www.kaggle.com/)  is  an  excellent  source  of  independent,
hands-on  data  science  lessons.  A  suggested  introductory  text  is  "Machine  Learning
Methods in the Environmental Sciences", by William Hsieh (Hsieh 2009), written at the
graduate student level. A useful paper and book written for ecologists is "Machine learning
methods without tears: A primer for ecologists" by Olden et al. (Olden et al. 2008) and
“Machine  Learning  Methods  for  Ecological  Applications”  edited  by  Fielding  (Fielding
1999a). ML can be mastered by natural scientists and the time invested in learning it can
have significant reward.
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